Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
نویسندگان
چکیده
Under conditions of heat shock at 42 degrees C, mRNAs of HSP (heat shock protein) genes are exported out of the nucleus, whereas bulk poly(A)(+) (polyadenylated) mRNA shows a nuclear accumulation in Saccharomyces cerevisiae. Such a selective mRNA export seems an efficacious strategy of yeast cells to adapt rapidly to stress. Although ethanol stress (10%, v/v) as well as heat shock blocks the export of bulk poly(A)(+) mRNA, the differences and/or similarity between heat shock and ethanol stress in the mechanisms of selective mRNA export still remain to be clarified. We found that ethanol stress induced transcriptional activation of a subset of yeast HSP genes; however, intriguingly, most such transcripts remained in the nucleus in a hyperadenylated state and, as a consequence, were not translated into HSPs. Elimination of ethanol resulted in a rapid shortening of the poly(A) tails of HSP mRNAs, loss of their nuclear retention, and the coincidental synthesis of the respective HSPs. Since HSP mRNAs are selectively exported from the nucleus in heat-shocked cells, yeast cells respond differently to ethanol stress and heat shock in the 3'-processing and transport of HSP mRNAs. Furthermore, these results also suggest that hyperadenylation and nuclear retention of mRNAs might be used as a means to control eukaryotic gene expression under stressed conditions.
منابع مشابه
Characterization of the export of bulk poly(A)+ mRNA in Saccharomyces cerevisiae during the wine-making process.
Ethanol stress affects the nuclear export of mRNA similarly to heat shock in Saccharomyces cerevisiae. However, we have little information about mRNA transport in actual alcoholic fermentation. Here we characterized the transport of mRNA during wine making and found that bulk poly(A)+ mRNA accumulated in the nucleus as fermentation progressed.
متن کاملStress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock.
Ethanol stress (10% v/v) causes selective mRNA export in Saccharomyces cerevisiae in a similar manner to heat shock (42 degrees C). Bulk poly(A)(+) mRNA accumulates in the nucleus, whereas heat shock protein mRNA is exported under such conditions. Here we investigated the effects of stress on mRNA export factors. In cells treated with ethanol stress, the DEAD box protein Rat8p showed a rapid an...
متن کاملNuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways.
Several studies of the yeast Saccharomyces cerevisiae support differential regulation of heat shock mRNA (hs mRNA) and non-hs mRNA nuclear export during stress. These include the finding that hs mRNA export at 42 degrees C is inhibited in the absence of the nucleoporinlike protein Rip1p (also called Nup42p) (C. A. Saavedra, C. M. Hammell, C. V. Heath, and C. N. Cole, Genes Dev. 11:2845-2856, 19...
متن کاملThe sensitivity of the yeast, Saccharomyces cerevisiae, to acetic acid is influenced by DOM34 and RPL36A
The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood. Members of heat shock chaperone HSP proteins have been linked ...
متن کاملThe nuclear pore complex and the DEAD box protein Rat8p/Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock.
Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 414 1 شماره
صفحات -
تاریخ انتشار 2008